Deformable Model Collision Detection using A-Buffer

Hanyoung Jang*

JungHyun Han'

Game Research Center, College of Information and Communications
Korea University, Seoul, Korea

Abstract

This paper presents a new image-space algorithm for real-time col-
lision detection, where the GPU computes the potentially colliding
sets (PCSs), and the CPU performs the standard triangle/triangle
intersection test. When the bounding boxes of two objects inter-
sect, the intersection is passed to the GPU. By rendering the ob-
jects in the intersection region, the GPU saves the object surfaces
in A-buffer about 8 times faster than the ordinary approaches. As
surfaces are rendered, their depth values are stored in textures. If
the depth disparity between two surfaces is small enough, a PCS
is obtained, which consists of two triangle, with a triangle from an
object. The PCSs are read back to the CPU, and the CPU com-
putes the intersection points between triangles. The proposed al-
gorithm overcomes a variety of weaknesses which are revealed in
the existing collision detection techniques: it does not require any
preprocessing, it can handle dynamic models including deformable
and fracturing meshes, it can compute self-collisions, etc. Its per-
formance proves its usefulness in real-time applications such as 3D
games.

Introduction The mainstream of collision detection algorithms is
based on object-space computation, which usually uses the bound-
ing volume hierarchies (BVHs). On the other hand, the image-
space collision detection algorithms do not require additional data
structures such as BVHs. They are accelerated by GPU’s raster-
ization capability and programable shaders. Therefore, the per-
formance of the image-space collision detection algorithms grows
upon the improvement of the GPU. The algorithms can also effec-
tively handle deformable objects and dynamic environments. How-
ever, the image-space algorithms often suffer from the overhead of
rendering and readback, and reveal the inaccuracy problem of the
collision detection results. Our method improves such weaknesses
of the image-space algorithms.

Features The major strengths of the proposed algorithm can be
listed as follows: no special data structure is required, no prepro-
cessing is required, dynamic objects including deforming and even
fracturing objects can be handled, self-collision is detected, render-
ing and readback overheads are significantly reduced, and the CPU
overhead is also reduced due to the small size of a PCS.

Framework This paper proposes to compute PCSs using GPU
and leave the primitive-level intersection test to CPU. Each object
is associated with an axis-aligned bounding box (AABB). First of
all, the AABB overlap test is performed between two objects. If the
AABBs overlap, the intersection is passed to the GPU as a region
of interest (ROI). Given an ROI, the GPU performs three steps: sur-
face accumulation, PCS generation, and stream reduction. A PCS
consists of two triangles.

Surface accumulation In the graphics rendering fields, the effort
for saving the multi-layer depth image has been proposed [Myers
and Bavoil 2007]. The approach captures up to 8 layers in a pass.

*e-mail: jhymail @gmail.com
fe-mail: jhan@korea.ac.kr

Copyright is held by the author / owner.
13D 2008, Redwood City, California, February 15-17, 2008.
ACM 978-1-59593-983-8/08/0002

Our approach adopts A-buffer in order to save the surface informa-
tion for collision detection. The GPU renders the object’s surface
of the ROI. When the objects are rendered, two values are saved
into two color channels, red and green. The red channel stores the
depth value of the fragment, and the green channel stores the #ri-
angle ID of the owner triangle of the fragment. Thanks to DirectX
10, triangle IDs are allocated by using SV_PrimitivelD semantic in
shader with no additional effort.

PCS generation As the result of surface accumulation, a texel of
A-buffer may contain surface information of two objects. In order
to compute PCSs, a simple test is invoked. If the distance between
a surface from one object and a surface from the other object is less
than the threshold e, the triangle IDs are retrieved from the surfaces,
and the IDs of the two triangles are saved into a render target as a
PCS.

Stream reduction The texels of the render target which contain
PCSs should be read back to the CPU. Some texels contain the in-
formation of PCSs, but most of them have no information. This
sparse data is processed to reduce the readback overhead by using
stream reduction. Fortunately, recent GPUs such as NVidia’s G80
support geometry shader, which can trivially be used to remove un-
wanted elements from a stream of input, and the reduced elements
are written to a memory resource which can be copied to a stag-
ing resource for readback to the CPU. Finally, given the texels, the
CPU computes the intersection points by performing triangle-level
intersection test.

Conclusion Utilizing the functionalities of the recent GPU, the
proposed algorithm can handle deformable and fracturing objects,
and can perform self-collision detection. The experimental results
show the feasibility of the shader-based collision detection and its
performance gain, which must be useful in real-time applications
such as 3D games.

Acknowledgement

This research was supported by MIC, Korea under ITRC IITA-
2007-(C1090-0701-0046).

References

MYERS, K., AND BAvOIL, L. 2007. Stencil routed a-buffer. In
ACM SIGGRAPH 2007 sketches, ACM, NY, USA, 21.



